radius $3.3 \AA$, there are four other H atoms that belong to CH and CH_{3} groups.

The authors thank Professor F. H. Herbstein for a preprint of his paper on decachlorophenanthrene. This work was carried out with the support of Research Grant 7400475 of the Italian CNR.

References

Ando, O., Ashida, T., Sasada, Y. \& Kakudo, M. (i967). Acta Cryst. 23, 172-173.
Benedetti, E., Pedone, C. \& Sirigu, A. (1973). Acta Cryst. B29, 730-733.

Cruickshank, D. W. J. \& Pilling, D. E. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, edited by R. Pepinsky, J. M. Robertson \& J. C. Speakman, p. 32. Oxford: Pergamon Press.
Di Blasio, B., Pedone, C. \& Sirigu, A. (1975). Acta Cryst. B31, 601-602.
Herbstein, F. H., Kapon, M. \& Merksamer, R. (1976). Acta Cryst. B32, 2205-2210.
Immirzi, A. (1967). Ric. Sci. 37, 743-769.
Mallikarjunan, M. \& Rao, S. T. (1969). Acta Cryst. B25, 296-303.
Parthasarathy, R. (1966). Acta Cryst. 21, 422-426.
Pedone, C. \& Benedetti, E. (1972). Acta Cryst. B28, 1970-1971.
Rao, S. T. (1969). Z. Kristallogr. 128, 339-351.
Torii, K. \& Iitaka, Y. (1970). Acta Cryst. B26, 1317-1325.

Acta Cryst. (1977). B33, 545-547

Methylchlorophyllide A Dihydrate

By C. Kratky and J. D. Dunitz
Laboratory of Organic Chemistry, Federal Institute of Technology (ETH), 8092 Zürich, Switzerland

(Received 2 September 1976; accepted 18 September 1976)

Abstract. Monoclinic, $P 2_{1}, a=8.76(1), b=25.86$ (3), $c=8.47(1) \quad \AA, \quad \beta=119.20(5)^{\circ} ; \quad \mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~N}_{4}-$ $\mathrm{Mg} .2 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=665 \cdot 06 ; \quad Z=2, \quad D_{m}=1 \cdot 30$; $D_{x}=1.32 \mathrm{~g} \mathrm{~cm}^{-3}$. A net of hydrogen bonds gives rise to the formation of layers of chlorophyllide molecules, very similar to those found in crystals of ethylchlorophyllide A and B [Strouse, Proc. Natl. Acad. Sci. US (1974), 71, 325-328; Chow, Serlin \& Strouse, J. Amer. Chem. Soc. (1975), 97, 7230-7237; Kratky \& Dunitz, Acta Cryst. (1975), B31, 1586-1589].

Introduction. Crystals grown by slow evaporation from acetone $/ 10 \%$ water under exclusion of oxygen were frequently twinned.* Intensities from a crystal fragment $0.5 \times 0.3 \times 0.05 \mathrm{~mm}$ were measured on an automated four-circle diffractometer (Hilger \& Watts Y290) with graphite-monochromatized Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$), yielding 2398 independent reflexions in the range $\theta \leq 23^{\circ}$. The data were processed to yield 1950 reflexions with intensity significantly above background $\left[\left|F_{o}\right|>\sigma\left(\left|F_{o}\right|\right)\right]$. No absorption correction was applied $\left[\mu(\operatorname{Mo} K a)=1 \cdot 158 \mathrm{~cm}^{-1}\right]$.

[^0]The structure was solved with MULTAN (Germain, Main \& Woolfson, 1970). All 308 reflexions with $|E|$ >1.4 were included in the phase-determining process with 64 sets of starting phases. The E map calculated with phases from the solution with the best figures of merit contained 34 peaks forming a chemically reasonable pattern. After two cycles of least-squares refinement ($R=0 \cdot 29$), an F_{o} synthesis showed eight more atoms, which were included in four further cycles ($R=0 \cdot 19$). A second F_{o} synthesis then yielded the positions of the remaining six atoms.

After two cycles of full-matrix least-squares refinement with isotropic temperature factors for all atoms ($R=0 \cdot 11$), H atoms were included at calculated positions. The orientations of the terminal CH_{3} groups were estimated from an $\left(F_{o}-F_{c}\right)$ synthesis. Three cycles of block-diagonal least-squares refinement with anisotropic temperature factors for the peripheral atoms reduced R to 0.089 , with H atom contributions included in F_{c} but not refined.

At this stage, scrutiny of the data revealed that the $\left(\left|F_{o}\right|-\left|F_{c}\right|\right)$ values for reflexions measured at χ settings around 0° or 90° were systematically negative, suggesting that the corresponding intensities had been only partially recorded. The reflexions in question were remeasured with a larger collimator for the detector. Refinement was then continued with a separate scale factor for the set of 487 remeasured reflexions.

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and vibrational tensor components $\left(\times 10^{4}\right)$
The temperature factors have the forms (a) for atoms refined isotropically $T=\exp \left[-\left(8 \pi^{2} U_{\text {iso }} \sin ^{2} \theta / \lambda^{2}\right)\right]$; (b) for atoms refined anisotropically $\left.T=\exp \mid-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+\cdots+2 h k a^{*} b^{*} U_{12}+\cdots\right)\right]$. E.s.d.'s are in parentheses.

	x	ν	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{O}(1)$	920 (11)	1839 (3)	-7044 (10)	582 (47)	548 (47)	446 (40)	6 (40)	334 (37)	73 (38)
$\mathrm{O}(2)$	-1420(18)	2826 (5)	-5806 (22)	964 (87)	533 (67)	1673 (129)	210 (64)	529 (87)	311 (75)
$\mathrm{O}(3)$	1132 (15)	2513 (4)	-3662 (12)	988 (75)	612 (54)	564 (50)	-84 (52)	421 (52)	-39 (43)
$\mathrm{O}(4)$	-7368(13)	2670 (4)	-8749 (11)	888 (65)	819 (65)	429 (42)	266 (57)	345 (45)	158 (45)
O (5)	-8024 (14)	3196 (4)	-7110(12)	774 (61)	732 (64)	523 (49)	351 (53)	215 (45)	133 (45)
O(6)	1843 (11)	1195 (4)	1015 (11)	541 (47)	618 (53)	537 (46)	-5 (44)	293 (39)	35 (41)
O (7)	3308 (13)	1842 (5)	-345 (14)	742 (63)	842 (70)	805 (64)	45 (57)	440 (55)	36 (57)
$\mathrm{C}(21)$	-4034 (15)	636 (5)	2669 (14)	555 (64)	554 (70)	442 (55)	-52 (61)	347 (52)	-17(55)
C(22)	-1386 (17)	-343 (5)	4203 (16)	614 (77)	606 (82)	446 (64)	50 (66)	257 (61)	75 (59)
C(23)	-2318(24)	-417 (8)	4934 (23)	972 (114)	1017 (126)	846 (107)	97 (100)	608 (99)	489 (99)
C(24)	3489 (19)	-1169 (6)	2822 (19)	653 (78)	551 (79)	662 (77)	192 (66)	307 (67)	225 (66)
$\mathrm{C}(25)$	4929 (17)	-912 (5)	51 (19)	557 (66)	507 (67)	695 (76)	144 (59)	350 (61)	71 (59)
C(26)	4156 (23)	-1289 (7)	-1524 (23)	796 (101)	847 (107)	772 (100)	-62 (86)	328 (82)	-342 (85)
C(27)	3616 (14)	636 (5)	-4901 (15)	475 (57)	545 (65)	504 (57)	99 (56)	316 (49)	15 (55)
C(28)	511 (13)	1647 (4)	-5966(13)	449 (56)	493 (60)	283 (49)	-174 (51)	183 (45)	-106(44)
C(29)	-912 (15)	1909 (5)	-5638(13)	536 (62)	505 (63)	319 (51)	7 (53)	261 (49)	136 (49)
C(30)	-4705 (13)	2159 (4)	-5512 (14)	405 (56)	520 (62)	371 (53)	63 (40)	244 (48)	-58(48)
C(31)	-5715 (15)	2644 (4)	-5536(13)	577 (66)	467 (62)	339 (53)	198 (55)	188 (51)	96 (46)
C(32)	-3296(19)	2335 (5)	-721(16)	874 (91)	521 (70)	464 (63)	100 (64)	401 (66)	21 (51)
C(33)	-475 (16)	2473 (4)	-5057(17)	637 (61)	424 (61)	705 (69)	-13(53)	522 (62)	80 (53)
C(34)	1545 (30)	3049 (6)	-3115 (24)	1476 (171)	694 (91)	907 (108)	-518(108)	740 (120)	-547(90)
C(35)	-7099 (14)	2829 (4)	-7321(15)	481 (62)	485 (63)	479 (59)	29 (50)	294 (52)	106 (51)
C(36)	-9413 (22)	3423 (8)	-8713(22)	642 (91)	1127 (134)	725 (98)	436 (96)	33 (76)	64 (92)
	x	\underline{y}	z	$U_{\text {iso }}$		x	V	z	$U_{\text {iso }}$
Mg^{2+}	96 (4)	678 (0)	-757 (4)	416(8)	$\mathrm{C}(9)$	2634 (13)	-172(4)	-698(14)	387 (22)
$\mathrm{N}(1)$	-1168(10)	424 (3)	594 (10)	356 (17)	$\mathrm{C}(10)$	2888 (13)	72 (4)	-2002 (14)	391 (23)
$\mathrm{N}(2)$	1484 (11)	-21(3)	-135(11)	383 (19)	C(11)	2037 (13)	507 (4)	-2973 (13)	375 (21)
$\mathrm{N}(3)$	733 (10)	751 (3)	-2773 (10)	368 (17)	C(12)	2313 (12)	777 (4)	-4307 (13)	375 (22)
$\mathrm{N}(4)$	-1902 (10)	1269 (3)	-2118(10)	315 (16)	$\mathrm{C}(13)$	1112 (13)	1196 (4)	--4857(13)	363 (21)
C(1)	-2408 (12)	701 (4)	794 (12)	358 (20)	C(14)	231 (12)	1164 (4)	-3852(12)	345 (20)
C(2)	-2736 (13)	442 (4)	2126 (14)	426 (22)	C (15)	-968(13)	1565 (4)	-4181 (13)	384 (22)
C(3)	-1634 (13)	32 (4)	2762 (14)	418 (23)	$\mathrm{C}(16)$	-1983(12)	1612 (4)	-3352 (12)	326 (20)
C(4)	-637 (13)	24 (4)	1780 (14)	413 (23)	C(17)	-3193(13)	2059 (4)	-3568 (14)	385 (22)
C(5)	637 (14)	-331 (4)	2034 (14)	438 (23)	$\mathrm{C}(18)$	-3822(14)	1928 (4)	-2197(13)	398 (22)
C(6)	1633 (13)	-353 (4)	1145 (14)	395 (22)	C(19)	-2947(13)	1416 (4)	-1431 (13)	384 (22)
C(7)	2956 (14)	-747(4)	1455 (14)	466 (25)	C(20)	-3205 (13)	1137 (4)	-165 (13)	370 (22)
C(8)	3578 (14)	-631 (4)	284 (14)	450 (24)					

Two cycles of full-matrix least-squares refinement $\left\{\right.$ weight $=\left[1 / \sigma\left(F_{o}\right)\right] \exp \left[a(\sin \theta / \lambda)^{2}\right], a=10 \AA^{2}$ (Dunitz \& Seiler, 1973) $\}$ yielded a final R of 0.077 for the 1901 reflexions with $\left|F_{o}\right|>2 \cdot 5 \quad \sigma\left(\left|F_{o}\right|\right)$. The expectation value of R is 0.09 . Final positional and thermal parameters are given in Table 1.*

Discussion. Fig. 1 shows the molecule projected on the plane of $\mathrm{N}(1), \mathrm{N}(2)$ and $\mathrm{N}(3)$. Derived parameters (interatomic distances and angles, calculated H positions) are not listed here, but are recorded elsewhere (Kratky, 1976).

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32132 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Fig. 1. Projection of the methylchlorophyllide A molecule on the plane of $\mathrm{N}(1), \mathrm{N}(2)$ and $\mathrm{N}(3)$. $\mathrm{C}(33)$ is hidden behind $\mathrm{C}(34)$ and $\mathrm{O}(3)$.

Fig. 2. Packing of methylchlorophyllide A molecules in a two-dimensional layer. The projection is down \mathbf{b}; a runs right to left, and \mathbf{c} (the propagation direction of the one-dimensional stacks) upwards at an angle turned 30° clock wise from the vertical direction.

The Mg atom is $0.34 \AA$ from the mean plane of its four N ligands and is also coordinated to a fifth ligand [the water molecule $\mathrm{O}(6)$] at $2.03 \AA$. This water molecule forms a hydrogen bond to the carbonyl $\mathrm{O}(1)$ of the molecule related by the $8.42 \AA$ translation $[\mathrm{O}(6) \cdots \mathrm{O}(1)(x, y, z+1), 2 \cdot 72 \AA]$, giving rise to onedimensional stacks along \mathbf{c}. The second water molecule $\mathrm{O}(7)$ is involved in three hydrogen bonds: to $\mathrm{O}(6)$ $[\mathrm{O}(7) \cdots \mathrm{O}(6), 2.69 \AA]$, to the ether $\mathrm{O}(3)[\mathrm{O}(7) \cdots$ $\mathrm{O}(3), 3.05 \AA$] and to the propionic acid ester carbonyl $\mathrm{O}(4)$ of the molecule related by the [101] translation $[\mathrm{O}(7) \cdots \mathrm{O}(4)(x+1, y, z+1), 2.75 \AA]$. The twodimensional layer structure formed by this pattern of hydrogen bonds (Fig. 2) is very similar to that found in crystals of ethylchlorophyllide A and B (Strouse, 1974; Chow, Serlin \& Strouse, 1975; Kratky \& Dunitz, 1975); indeed, apart from differences in conformation of the propionic acid ester side-chain on ring IV and the methoxycarbonyl group on ring V , the structures are almost isomorphous in two dimensions. However, contacts between molecules belonging to adjacent layers are dif-
ferent in the two structures. In the ethylchlorophyllide structure, adjacent layers are related by a 3_{1} axis, whereas in this structure they are related by a 2_{1} axis.

This work was supported by the Swiss National Fund for the Advancement of Scientific Research.

References

Chow, H. C., Serlin, D. S. \& Strouse, C. E. (1975). J. Amer. Chem. Soc. 97, 7230-7237.
Dunitz, J. D. \& Seller, P. (1973). Acta Cryst. B29, 589-595.
Germain, G., Main, P. \& Woolfson, M. M. (1970). Acta Cryst. B26, 274-285.
Kratky, C. (1976). PhD Thesis No. 5760, Federal Institute of Technology (ETH), Zürich.
Kratky, C. \& Dunitz, J. D. (1975). Acta Cryst. B31, 1586-1589.
Strouse, C. E. (1974). Proc. Natl. Acad. Sci. US, 71, 325-328.

Acta Cryst.(1977). B33, 547-549

Methylpyrochlorophyllide A Monohydrate Monoetherate

By C. Kratky, H. P. Isenring and J. D. Dunitz
Laboratory of Organic Chemistry, Federal Institute of Technology (ETH), 8092 Zürich, Switzerland

(Receired 2 Scptember 1976: accepted 18 September 1976)

Abstract

Orthorhombic, $P 2_{12} 2_{1}, a=23.01$ (3), $b=$ $19.08(3), c=8.42$ (1) $\AA ; \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}_{4} \mathrm{Mg} . \mathrm{H}_{2} \mathrm{O}$.$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}, M_{r}=663 \cdot 12 ; Z=4, D_{m}=1 \cdot 17, D_{x}=1 \cdot 19$ $\mathrm{g} \mathrm{cm}^{-3}$. The five-coordinated Mg atom has as its fifth ligand a water molecule which is involved in two

hydrogen bonds: one to a molecule of ether of solvation, the other to the ring V carbonyl O atom of the chlorophyll related by the [001] or [001] translation. The ether molecule and the ethyl substituent on ring II are disordered in the crystal.

[^0]: * We thank Dr Hans Peter Isenring, Laboratory of Organic Chemistry, ETH Zürich, for supplying the crystals.

